OFFSET
0,1
COMMENTS
For n>=1, a(n) is the second Zagreb index of the tetrameric 1,3-adamantane TA[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of the tetrameric 1,3-adamantane can be viewed in the G. H. Fath-Tabar et al. reference.
The M-polynomial of the tetrameric 1,3-adamantane TA[n] is M(TA[n],x,y) = 6*(n+1)*x^2*y^3 + 6*(n-1)*x^2*y^4 + (n-1)*x^4*y^4.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
G. H. Fath-Tabar, A. Azad, and N. Elahinezhad, Some topological indices of tetrameric 1,3-adamantane, Iranian J. Math. Chemistry, 1, No. 1, 2010, 111-118.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
FORMULA
G.f.: 4*(32*x - 7)/(1 - x)^2.
a(n) = A017293(10*n-3) for n > 0. - Felix Fröhlich, Nov 12 2016
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Nov 13 2016
MAPLE
seq(100*n-28, n = 0..40);
MATHEMATICA
100*Range[0, 40]-28 (* or *) LinearRecurrence[{2, -1}, {-28, 72}, 50] (* Harvey P. Dale, Feb 13 2018 *)
PROG
(PARI) a(n) = 100*n - 28 \\ Felix Fröhlich, Nov 12 2016
(Magma) [100*n-28: n in [0..40]]; // Vincenzo Librandi, Nov 13 2016
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Emeric Deutsch, Nov 12 2016
STATUS
approved