login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277989
a(n) = 424*2^n + 37.
1
461, 885, 1733, 3429, 6821, 13605, 27173, 54309, 108581, 217125, 434213, 868389, 1736741, 3473445, 6946853, 13893669, 27787301, 55574565, 111149093, 222298149, 444596261, 889192485, 1778384933, 3556769829, 7113539621, 14227079205, 28454158373, 56908316709
OFFSET
0,1
COMMENTS
a(n) is the second Zagreb index of the micelle-like chiral dendrimer B[n]. The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph. The pictorial definition of B[n] can be viewed in the Yousefi-Azari et al. references.
The M-polynomial of the micelle-like chiral dendrimer B[n] is M(B[n],x,y) = (8*2^n + 2)*x*y^2 + 12*x^2*y^2 + (56*2^n - 10)*x^2*y^3 + (8*2^n +5)*x^3*y^3.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
H. Yousefi-Azari, A. R. Ashrafi, and M. H. Khalifeh, Wiener index of micelle-like chiral dendrimers, Studia UBB, Chemia, 55, No. 4, 125-130, 2010.
H. Yousefi-Azari and A. R. Ashrafi, Computing PI index of micelle-like chiral dendrimers, Bulgarian Chem. Commun., 44, 4, 2012, 307-309.
FORMULA
G.f.: (461 - 498*x)/((1-x)*(1-2*x)).
MAPLE
seq(424*2^n+37, n = 0..35);
MATHEMATICA
424*2^Range[0, 30]+37 (* or *) LinearRecurrence[{3, -2}, {461, 885}, 30] (* Harvey P. Dale, Feb 19 2018 *)
PROG
(Magma) [424*2^n+37: n in [0..40]]; // Vincenzo Librandi, Nov 13 2016
CROSSREFS
Cf. A277988.
Sequence in context: A107973 A227994 A142832 * A138956 A107121 A101734
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Nov 12 2016
STATUS
approved