OFFSET
1,1
COMMENTS
If n is in the sequence then pi(n) = prime(d_1*d_2*...*d_k) where d_1 d_2 ... d_k is the decimal expansion of n, so this sequence is a subsequence of A107120.
The sequence is finite as n >= 10^(k-1) grows faster than prime(prime(9^k)) >= prime(prime(d_1*d_2*...*d_k)). If it exists, a(5) > 10^14. - Max Alekseyev, Dec 30 2024
EXAMPLE
14738827 is in the sequence because 14738827=prime(prime(1*4*7*3*8*8*2*7)).
MATHEMATICA
Do[h= IntegerDigits[Prime[m]]; l = Length[h]; If[Min[h] > 0 && m == Prime[Product[h[[k]], {k, l}]], Print[Prime [m]]], {m, 20000000}]
CROSSREFS
KEYWORD
base,fini,nonn,more,changed
AUTHOR
Farideh Firoozbakht, May 13 2005
STATUS
approved