login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059025 Triangle of Stirling numbers of order 6. 4
1, 1, 1, 1, 1, 1, 1, 462, 1, 1716, 1, 4719, 1, 11440, 1, 25883, 1, 56134, 1, 118456, 2858856, 1, 245480, 23279256, 1, 502588, 124710300, 1, 1020680, 551496660, 1, 2061709, 2181183147, 1, 4149752, 8021782197, 1, 8333153, 28051272535 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,8

COMMENTS

The number of partitions of the set N, |N|=n, into k blocks, all of cardinality greater than or equal to 6. This is the 6-associated Stirling number of the second kind.

This is entered as a triangular array. The entries S_6(n,k) are zero for 6k>n, so these values are omitted. Initial entry in sequence is S_6(6,1).

Rows are of lengths 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, ...

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 222.

J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 76.

LINKS

Table of n, a(n) for n=6..44.

A. E. Fekete, Apropos two notes on notation, Amer. Math. Monthly, 101 (1994), 771-778.

FORMULA

S_r(n+1, k)=k S_r(n, k)+binomial(n, r-1)S_r(n-r+1, k-1) for this sequence, r=6.

G.f.: Sum_{n>=0, k>=0} S_r(n,k)*u^k*t^n/n! = exp(u(e^t - Sum_{i=0..r-1} t^i/i!)).

EXAMPLE

There are 462 ways of partitioning a set N of cardinality 12 into 2 blocks each of cardinality at least 6, so S_6(12,2)=462.

MATHEMATICA

S6[n_ /; 6 <= n <= 11, 1] = 1; S6[n_, k_] /; 1 <= k <= Floor[n/6] := S6[n, k] = k*S6[n-1, k] + Binomial[n-1, 5]*S6[n-6, k-1]; S6[_, _] = 0; Flatten[ Table[ S6[n, k], {n, 6, 24}, {k, 1, Floor[n/6]}]] (* Jean-Fran├žois Alcover, Feb 21 2012 *)

CROSSREFS

Cf. A008299, A059022, A059023, A059024.

Sequence in context: A138956 A107121 A101734 * A267200 A094380 A267404

Adjacent sequences:  A059022 A059023 A059024 * A059026 A059027 A059028

KEYWORD

nonn,tabf,nice

AUTHOR

Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 14 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 20 08:27 EDT 2019. Contains 326143 sequences. (Running on oeis4.)