login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059027
Number of Dyck paths of semilength n with no peak at height 4.
2
1, 1, 2, 5, 13, 35, 97, 276, 805, 2404, 7343, 22916, 72980, 236857, 782275, 2625265, 8938718, 30834165, 107608097, 379454447, 1350434278, 4845475311, 17512579630, 63703732426, 233063976059, 857067469749, 3166309373615, 11745982220846
OFFSET
0,3
REFERENCES
Peart and Woan, in press, G_4(x).
LINKS
P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, 4 (2001), #01.1.3.
FORMULA
G.f.: (2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2)).
a(n) = sum(k=1..n-2, sum(j=max(2*k-n+1,0)..k-1, (binomial(k,j)*((k-j)*binomial(2*n-3*k+j-3,n-1-2*k+j)))/(n-k-1)*2^j))+2^(n-1). - Vladimir Kruchinin, Oct 03 2013
a(n) ~ 4^n/(9*sqrt(Pi)*n^(3/2)) * (1+197/(24*n)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + ...
MATHEMATICA
CoefficientList[Series[(2 - 3 x + x (1 - 4 x)^(1/2))/(2 - 5 x + x (1 - 4 x)^(1/2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 05 2013 *)
PROG
a(n):=if n=0 then 1 else sum(sum((binomial(k, j)*((k-j)*binomial(2*n-3*k+j-3, n-1-2*k+j)))/(n-k-1)*2^j, j, max(2*k-n+1, 0), k-1), k, 1, n-2)+2^(n-1); [Vladimir Kruchinin, Oct 03 2013]
(PARI) x='x+O('x^66); Vec((2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2))) \\ Joerg Arndt, Oct 03 2013
CROSSREFS
G_1, G_2, G_3, G_4 give A000957, A000108, A059019, A059027 resp.
Sequence in context: A085281 A082582 A086581 * A025198 A221205 A037247
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 12 2001
STATUS
approved