OFFSET
0,3
REFERENCES
Peart and Woan, in press, G_4(x).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
P. Peart and W.-J. Woan, Dyck Paths With No Peaks at Height k, J. Integer Sequences, 4 (2001), #01.1.3.
FORMULA
G.f.: (2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2)).
a(n) = sum(k=1..n-2, sum(j=max(2*k-n+1,0)..k-1, (binomial(k,j)*((k-j)*binomial(2*n-3*k+j-3,n-1-2*k+j)))/(n-k-1)*2^j))+2^(n-1). - Vladimir Kruchinin, Oct 03 2013
a(n) ~ 4^n/(9*sqrt(Pi)*n^(3/2)) * (1+197/(24*n)). - Vaclav Kotesovec, Mar 20 2014
EXAMPLE
1 + x + 2*x^2 + 5*x^3 + 13*x^4 + 35*x^5 + 97*x^6 + ...
MATHEMATICA
CoefficientList[Series[(2 - 3 x + x (1 - 4 x)^(1/2))/(2 - 5 x + x (1 - 4 x)^(1/2)), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 05 2013 *)
PROG
a(n):=if n=0 then 1 else sum(sum((binomial(k, j)*((k-j)*binomial(2*n-3*k+j-3, n-1-2*k+j)))/(n-k-1)*2^j, j, max(2*k-n+1, 0), k-1), k, 1, n-2)+2^(n-1); [Vladimir Kruchinin, Oct 03 2013]
(PARI) x='x+O('x^66); Vec((2-3*x+x*(1-4*x)^(1/2))/(2-5*x+x*(1-4*x)^(1/2))) \\ Joerg Arndt, Oct 03 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 12 2001
STATUS
approved