login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242135
a(n) = n^3 - 2*n.
7
0, -1, 4, 21, 56, 115, 204, 329, 496, 711, 980, 1309, 1704, 2171, 2716, 3345, 4064, 4879, 5796, 6821, 7960, 9219, 10604, 12121, 13776, 15575, 17524, 19629, 21896, 24331, 26940, 29729, 32704, 35871, 39236, 42805, 46584, 50579, 54796, 59241, 63920, 68839, 74004, 79421, 85096, 91035
OFFSET
0,3
COMMENTS
For n > 0, a(n) is the largest number k such that k^3 + n is divisible by k + n, or -1 if k is infinite. The resulting integer is n^6 - 5n^4 + 7n^2 - 1.
For n > 1, a(n) is also the largest number k such that k + n^3 is divisible by k + n. - Derek Orr, Oct 16 2014
a(n)^2 has the form m^3 + 2*m^2, where m = n^2 - 2. - Bruno Berselli, May 03 2018
LINKS
Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, Metered Parking Functions, arXiv:2406.12941 [math.CO], 2024. See pp. 12, 22.
FORMULA
a(n) = A000578(n) - A005843(n). - Wesley Ivan Hurt, Aug 16 2014
G.f.: -x*(1-8*x+x^2)/(1-x)^4. - Vincenzo Librandi, Oct 17 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Vincenzo Librandi, Oct 17 2014
E.g.f.: exp(x)*x*(x^2 + 3*x - 1). - Stefano Spezia, Mar 04 2023
EXAMPLE
a(2) = 4. n = 2, k = 4. 4^3 + 2 = 66. k + n = 6 and 66 comes from the largest value of k such that k^3 + n is divisible by k + n. The resulting integer is 11 = n^6 - 5n^4 + 7n^2 - 1. - Jon Perry, Aug 16 2014
MAPLE
A242135:=n->n^3-2*n: seq(A242135(n), n=0..50); # Wesley Ivan Hurt, Aug 16 2014
MATHEMATICA
Table[n^3 - 2 n, {n, 0, 50}] (* Wesley Ivan Hurt, Aug 16 2014 *)
CoefficientList[Series[- x (1 - 8 x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* Vincenzo Librandi, Oct 17 2014 *)
PROG
(PARI) vector(100, n, (n-1)^3 - 2*(n-1))
(Magma) [n^3-2*n: n in [0..45]]; // Vincenzo Librandi, Oct 17 2014
(Magma) I:=[0, -1, 4, 21]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Oct 17 2014
CROSSREFS
Sequence in context: A201446 A371311 A220772 * A332981 A135559 A254449
KEYWORD
sign,easy
AUTHOR
Derek Orr, Aug 16 2014
STATUS
approved