login
A242132
Smallest k such that (2*k*3^n+1)*2*k*3^n-1 is prime, with k not divisible by 3.
4
1, 7, 1, 4, 1, 8, 11, 5, 20, 1, 16, 10, 1, 8, 2, 5, 5, 5, 2, 50, 20, 128, 11, 13, 23, 5, 52, 2, 20, 38, 1, 5, 11, 1, 14, 22, 10, 31, 2, 35, 8, 107, 112, 103, 80, 22, 40, 104, 20, 1, 29, 40, 1, 61, 77, 8, 41, 62, 1, 5, 46, 20, 35, 29, 68, 23, 85, 49, 58, 23
OFFSET
1,2
COMMENTS
Conjectures: the ratio a(n)/n is always <10 and sum(a(n)/n)/N for n=1 to N tends to 1 as N tends to infinity.
MATHEMATICA
sk[n_]:=Module[{k=1}, While[Mod[k, 3]==0||!PrimeQ[(2k 3^n+1)2 k 3^n-1], k++]; k]; Array[sk, 70] (* Harvey P. Dale, Mar 04 2023 *)
PROG
(PFGW & SCRIPT)
SCRIPT
DIM n, 0
DIM i
DIM pp
DIMS t
OPENFILEOUT myf, a(n).txt
LABEL loop1
SET n, n+1
SET i, 0
LABEL loop2
SET i, i+1
SETS t, %d, %d\,; n; i
SET pp, (2*i*3^n+1)*2*i*3^n-1
PRP pp, t
IF ISPRP THEN GOTO a
GOTO loop2
LABEL a
WRITE myf, t
GOTO loop1
(PARI) a(n) = {k = 1; while (! isprime((2*k*3^n+1)*2*k*3^n-1) || !(k % 3), k++); k; } \\ Michel Marcus, May 05 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Pierre CAMI, May 05 2014
STATUS
approved