Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #47 Dec 12 2024 02:52:20
%S 0,-1,4,21,56,115,204,329,496,711,980,1309,1704,2171,2716,3345,4064,
%T 4879,5796,6821,7960,9219,10604,12121,13776,15575,17524,19629,21896,
%U 24331,26940,29729,32704,35871,39236,42805,46584,50579,54796,59241,63920,68839,74004,79421,85096,91035
%N a(n) = n^3 - 2*n.
%C For n > 0, a(n) is the largest number k such that k^3 + n is divisible by k + n, or -1 if k is infinite. The resulting integer is n^6 - 5n^4 + 7n^2 - 1.
%C For n > 1, a(n) is also the largest number k such that k + n^3 is divisible by k + n. - _Derek Orr_, Oct 16 2014
%C a(n)^2 has the form m^3 + 2*m^2, where m = n^2 - 2. - _Bruno Berselli_, May 03 2018
%H Jens Kruse Andersen, <a href="/A242135/b242135.txt">Table of n, a(n) for n = 0..10000</a>
%H Spencer Daugherty, Pamela E. Harris, Ian Klein, and Matt McClinton, <a href="https://arxiv.org/abs/2406.12941">Metered Parking Functions</a>, arXiv:2406.12941 [math.CO], 2024. See pp. 12, 22.
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A000578(n) - A005843(n). - _Wesley Ivan Hurt_, Aug 16 2014
%F G.f.: -x*(1-8*x+x^2)/(1-x)^4. - _Vincenzo Librandi_, Oct 17 2014
%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - _Vincenzo Librandi_, Oct 17 2014
%F E.g.f.: exp(x)*x*(x^2 + 3*x - 1). - _Stefano Spezia_, Mar 04 2023
%e a(2) = 4. n = 2, k = 4. 4^3 + 2 = 66. k + n = 6 and 66 comes from the largest value of k such that k^3 + n is divisible by k + n. The resulting integer is 11 = n^6 - 5n^4 + 7n^2 - 1. - _Jon Perry_, Aug 16 2014
%p A242135:=n->n^3-2*n: seq(A242135(n), n=0..50); # _Wesley Ivan Hurt_, Aug 16 2014
%t Table[n^3 - 2 n, {n, 0, 50}] (* _Wesley Ivan Hurt_, Aug 16 2014 *)
%t CoefficientList[Series[- x (1 - 8 x + x^2)/(1 - x)^4, {x, 0, 50}], x] (* _Vincenzo Librandi_, Oct 17 2014 *)
%o (PARI) vector(100, n, (n-1)^3 - 2*(n-1))
%o (Magma) [n^3-2*n: n in [0..45]]; // _Vincenzo Librandi_, Oct 17 2014
%o (Magma) I:=[0,-1,4,21]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // _Vincenzo Librandi_, Oct 17 2014
%Y Cf. A000578, A005843.
%K sign,easy
%O 0,3
%A _Derek Orr_, Aug 16 2014