login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242112
a(n) = floor((2*n+6)/(5-(-1)^n)).
1
1, 1, 2, 2, 3, 2, 4, 3, 5, 4, 6, 4, 7, 5, 8, 6, 9, 6, 10, 7, 11, 8, 12, 8, 13, 9, 14, 10, 15, 10, 16, 11, 17, 12, 18, 12, 19, 13, 20, 14, 21, 14, 22, 15, 23, 16, 24, 16, 25, 17, 26, 18, 27, 18, 28, 19, 29, 20, 30, 20, 31, 21, 32, 22, 33, 22, 34, 23, 35, 24, 36
OFFSET
0,3
FORMULA
a(n) = a(n-2) + a(n-6) - a(n-8).
a(n) = ( n+3 - A093718(n) ) / A010693(n).
From Robert Israel, Aug 22 2014: (Start)
a(n) = sqrt(3)/18*(sin(2*n*Pi/3)+sin(n*Pi/3)) + 1/6*(cos(2*n*Pi/3)-cos(n*Pi/3)) + (-1)^n*(2+n)/12 + 5*(n+2)/12.
G.f.: (1 + x + x^2 + x^3 + x^4)/(1 - x^2 - x^6 + x^8). (End)
a(n) = 1 + n/2 if n is even, otherwise a(n) = 1 + floor(n/3). - Bruno Berselli, Aug 22 2014
MAPLE
A242112:=n->floor((2*n+6)/(5-(-1)^n)): seq(A242112(n), n=0..100);
MATHEMATICA
Table[Floor[(2 n + 6)/(5 - (-1)^n)], {n, 0, 100}]
LinearRecurrence[{0, 1, 0, 0, 0, 1, 0, -1}, {1, 1, 2, 2, 3, 2, 4, 3}, 80] (* Harvey P. Dale, Oct 24 2017 *)
PROG
(Magma) [Floor((2*n+6)/(5-(-1)^n)) : n in [0..100]];
(Magma) [IsEven(n) select 1+n/2 else 1+Floor(n/3): n in [0..80]]; // Bruno Berselli, Aug 22 2014
CROSSREFS
Sequence in context: A366802 A178804 A322355 * A211316 A280226 A307995
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Aug 21 2014
STATUS
approved