login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242109
First of two consecutive (primes of the form n^2+1) with no semiprime of the same form between them.
0
2, 2917, 13457, 15377, 15877, 21317, 78401, 147457, 190097, 215297, 217157, 287297, 401957, 414737, 577601, 1299601, 1308737, 1313317, 1378277, 1547537, 1623077, 1664101, 1731857, 1742401, 1822501, 1887877, 1976837, 2044901, 2390117, 2421137, 2446097, 2483777
OFFSET
1,1
EXAMPLE
2 is in the sequence because there is no semiprime between the two primes 1^2 + 1 = 2 and 2^2 + 1 = 5 of the form k^2 + 1.
2917 is in the sequence because there is no semiprime between the two primes 54^2 + 1 = 2917 and 56^2 + 1 = 3127 : 55^2 + 1 = 3026 = 2*17*89 is not a semiprime.
MAPLE
with(numtheory):nn:=2000: lst:={}:
for n from 1 to nn do:
if type(n^2+1, prime)=true
then
lst:=lst union {n}:
else
fi:
od:
n1:=nops(lst):
for m from 1 to n1-1 do:
i1:=lst[m]:i2:=lst[m+1]:ii:=0:
for k from i1+1 to i2-1 do:
x:=k^2+1:y:=factorset(x):
if bigomega(x)=2 and nops(y)=2
then
ii:=ii+1:
else
fi:
od:
if ii=0
then
printf(`%d, `, i1^2+1):
else
fi:
od:
PROG
(PARI)
for(n=1, 10^4, if(isprime(n^2+1), k=1; while(!isprime((n+k)^2+1), k++); c=0; for(i=1, k-1, d=factor((n+i)^2+1); s=sum(j=1, #d[, 1], d[j, 2]); if(s==2, c++; break)); if(c==0, print1(n^2+1, ", ")))) \\ Derek Orr, Aug 15 2014
CROSSREFS
Sequence in context: A109119 A002495 A353126 * A078457 A128148 A308575
KEYWORD
nonn
AUTHOR
Michel Lagneau, Aug 15 2014
STATUS
approved