login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A353126
Numbers k such that k = PrimePi(k * digsum(k)).
1
2, 2700, 40071, 100363
OFFSET
1,1
COMMENTS
Numbers k such that k = A000720(A057147(k)).
No further terms < 3600000. - Michael S. Branicky, Apr 25 2022
a(5) > 10^10, if it exists. - David A. Corneth, Apr 25 2022
EXAMPLE
Consider number 2: digsum(2) equal 2; 2*2 = 4; The number of primes not exceeding 4 is 2, the number itself. Thus, 2 is in this sequence.
Consider number 11: 11*digsum(11) = 22; PrimePi(22) = 8. Thus, 11 is not in this sequence.
MATHEMATICA
Select[Range[1000000], # == PrimePi[# Total[IntegerDigits[#]]] &]
PROG
(PARI) isok(k) = k==primepi(k*sumdigits(k)); \\ Michel Marcus, Apr 25 2022
(PARI) upto(n) = {q = 2; t = 0; res = List(); forprime(p = 3, n, t++; s = nextmultiple(q, t); forstep(i = s, p - 1, t, if(i % t == 0, c = i/t; if(sumdigits(t) == c, listput(res, t)); ) ); q = p; ); res }
nextmultiple(n, m) = my(d = ((n-m)%m)); n + !!d*m - d \\ David A. Corneth, Apr 25 2022
(Python)
from sympy import primepi, sieve
sieve.extend(12*10**6)
def sod(n): return sum(map(int, str(n)))
def afind(limit):
for k in range(1, limit+1):
if k == primepi(k*sod(k)):
print(k, end=", ")
afind(100363) # Michael S. Branicky, Apr 25 2022
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Tanya Khovanova, Apr 24 2022
STATUS
approved