login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that k = PrimePi(k * digsum(k)).
1

%I #25 May 07 2022 10:31:55

%S 2,2700,40071,100363

%N Numbers k such that k = PrimePi(k * digsum(k)).

%C Numbers k such that k = A000720(A057147(k)).

%C No further terms < 3600000. - _Michael S. Branicky_, Apr 25 2022

%C a(5) > 10^10, if it exists. - _David A. Corneth_, Apr 25 2022

%e Consider number 2: digsum(2) equal 2; 2*2 = 4; The number of primes not exceeding 4 is 2, the number itself. Thus, 2 is in this sequence.

%e Consider number 11: 11*digsum(11) = 22; PrimePi(22) = 8. Thus, 11 is not in this sequence.

%t Select[Range[1000000], # == PrimePi[# Total[IntegerDigits[#]]] &]

%o (PARI) isok(k) = k==primepi(k*sumdigits(k)); \\ _Michel Marcus_, Apr 25 2022

%o (PARI) upto(n) = {q = 2; t = 0; res = List(); forprime(p = 3, n, t++; s = nextmultiple(q, t); forstep(i = s, p - 1, t, if(i % t == 0, c = i/t; if(sumdigits(t) == c, listput(res, t)); ) ); q = p; ); res }

%o nextmultiple(n, m) = my(d = ((n-m)%m)); n + !!d*m - d \\ _David A. Corneth_, Apr 25 2022

%o (Python)

%o from sympy import primepi, sieve

%o sieve.extend(12*10**6)

%o def sod(n): return sum(map(int, str(n)))

%o def afind(limit):

%o for k in range(1, limit+1):

%o if k == primepi(k*sod(k)):

%o print(k, end=", ")

%o afind(100363) # _Michael S. Branicky_, Apr 25 2022

%Y Cf. A000720, A007953, A057147, A353134.

%K nonn,base,more

%O 1,1

%A _Tanya Khovanova_, Apr 24 2022