login
A241855
Array t(n,k) of sum of successive even powers of primes, where t(n,k) = sum_(j=0..k-1) prime(n)^(2j), with n>=1 and k>=0, read by ascending antidiagonals.
0
0, 0, 1, 0, 1, 5, 0, 1, 10, 21, 0, 1, 26, 91, 85, 0, 1, 50, 651, 820, 341, 0, 1, 122, 2451, 16276, 7381, 1365, 0, 1, 170, 14763, 120100, 406901, 66430, 5461, 0, 1, 290, 28731, 1786324, 5884901, 10172526, 597871, 21845, 0, 1, 362, 83811, 4855540, 216145205, 288360150, 254313151, 5380840, 87381
OFFSET
1,6
COMMENTS
Conjecture: any term, except 0 and 1, is never a square.
Row n=1 is A002450,
row n=2 is A002452,
row n=3 is A218728,
row n=4 is A218753,
rows n>=5 are not in the OEIS,
column k=2 is A066872,
columns k>=3 are not in the OEIS.
FORMULA
t(n,k) = ((prime(n)^2)^k-1)/(prime(n)^2-1).
EXAMPLE
Array begins:
0, 1, 5, 21, 85, 341, 1365, ...
0, 1, 10, 91, 820, 7381, 66430, ...
0, 1, 26, 651, 16276, 406901, 10172526, ...
0, 1, 50, 2451, 120100, 5884901, 288360150, ...
0, 1, 122, 14763, 1786324, 216145205, 26153569806, ...
etc.
MATHEMATICA
t[n_, k_] := ((Prime[n]^2)^k-1)/(Prime[n]^2-1); Table[t[n-k+1, k], {n, 0, 10}, {k, 0, n}] // Flatten
KEYWORD
nonn,tabl
AUTHOR
STATUS
approved