login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291774
Triangle read by rows: chromatic invariant T(n,m) of the complete bipartite graph K_{m,n}.
0
1, 0, 1, 0, 1, 5, 0, 1, 13, 73, 0, 1, 29, 301, 2069, 0, 1, 61, 1081, 11581, 95401, 0, 1, 125, 3613, 57749, 673261, 6487445, 0, 1, 253, 11593, 268381, 4306681, 55213453, 610093513, 0, 1, 509, 36301, 1191989, 25794781, 431525429, 6077248381, 75796724309, 0, 1, 1021, 111961, 5136061, 147587401, 3173843821, 56153444761, 864806272861, 12020754177001
OFFSET
1,6
LINKS
Eric Weisstein's World of Mathematics, Chromatic Invariant
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
FORMULA
T(m,n) = Sum_{k = 0..m-1} k!*(-1)^(k + m)*(k + 1)^n*Stirling2(m, k + 2) for max(m,n) > 1.
EXAMPLE
Triangle begins:
1
0 1
0 1 5
0 1 13 73
0 1 29 301 2069
MATHEMATICA
Join[{1}, Table[Sum[k! (-1)^(k + m) (k + 1)^n StirlingS2[m, k + 2], {k, 0, m - 1}], {n, 2, 10}, {m, n}]] // Flatten
CROSSREFS
Main diagonal gives A048144.
Sequence in context: A241855 A379489 A221800 * A222061 A378981 A345453
KEYWORD
nonn,tabl
AUTHOR
Eric W. Weisstein, Aug 31 2017
STATUS
approved