

A241857


Number of primes p less than prime(n)1, such that adding prime(n)1 and p in binary does not require any carry.


1



0, 0, 2, 0, 1, 2, 6, 2, 0, 2, 0, 5, 7, 2, 1, 3, 1, 2, 8, 2, 9, 1, 4, 5, 11, 5, 1, 2, 4, 6, 0, 14, 16, 7, 9, 3, 4, 6, 3, 6, 3, 5, 0, 18, 8, 2, 4, 0, 4, 5, 7, 1, 6, 1, 54, 10, 15, 5, 16, 18, 7, 14, 6, 3, 10, 5, 6, 16, 2, 4, 17, 2, 1, 6, 1, 0, 15, 8, 19, 10, 6, 9
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


COMMENTS

Or the number of primes less than prime(n)1, such that
A000120(prime(n)+p1) = A000120(p) + A000120(prime(n)1).


LINKS

Peter J. C. Moses, Table of n, a(n) for n = 1..1000


FORMULA

For Mersenne prime(n), a(n)=0; for Fermat prime(n)>3, a(n)= n1.


EXAMPLE

Let n=12. Prime(12)1=371=36. There are only 5 primes less than 36 the adding of which with 36 does not require any carry: 2,3,11,17,19. So a(12)=5.


PROG

(Sage)
def count(x):
...c=0
...for y in range(x):
......if is_prime(y) and binomial(y+x1, y).mod(2)==1:
.........c=c+1
...return c
[count(i) for i in primes_first_n(100)] #  Tom Edgar, May 01 2014


CROSSREFS

Cf. A241756, A241758.
Sequence in context: A180662 A318144 A260663 * A300485 A014511 A210572
Adjacent sequences: A241854 A241855 A241856 * A241858 A241859 A241860


KEYWORD

nonn


AUTHOR

Vladimir Shevelev, Apr 30 2014


EXTENSIONS

More terms from Peter J. C. Moses, Apr 30 2014


STATUS

approved



