login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241767
Number of simple connected graphs with n nodes and exactly 1 articulation point (cutpoints).
7
0, 0, 1, 2, 7, 33, 244, 2792, 52448, 1690206, 96288815, 9873721048, 1841360945834, 629414405238720, 397024508142598996, 464923623652122023478, 1016016289424631486429082, 4162473006943138723685574978, 32096861904411547975392065322659
OFFSET
1,4
COMMENTS
Terms may be computed from A004115. See formula. There is an obvious bijection between a connected graph with 1 articulation point and a multiset of at least two rooted nonseparable graphs joined at the root node. - Andrew Howroyd, Nov 24 2020
LINKS
Travis Hoppe and Anna Petrone, Encyclopedia of Finite Graphs
T. Hoppe and A. Petrone, Integer sequence discovery from small graphs, arXiv preprint arXiv:1408.3644 [math.CO], 2014.
Eric Weisstein's World of Mathematics, Articulation Vertex
FORMULA
G.f.: x/(Product_{k>=1} (1 - x^k)^A004115(k+1)) - x - Sum_{k>=1} A004115(k)*x^k. - Andrew Howroyd, Nov 24 2020
CROSSREFS
Column k=1 of A325111.
Cf. other simple connected graph sequences with k articulation points A002218, A241767, A241768, A241769, A241770, A241771.
Cf. A004115 (rooted and without articulation points).
Sequence in context: A232690 A143889 A350758 * A222940 A227120 A353343
KEYWORD
nonn
AUTHOR
Travis Hoppe and Anna Petrone, Apr 28 2014
EXTENSIONS
Terms a(11) and beyond from Andrew Howroyd, Nov 24 2020
STATUS
approved