login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350758
Sum of all (j+1)-th products of (n-2j) successive primes for j=0..floor(n/2).
2
1, 2, 7, 33, 226, 2420, 31221, 525917, 9960028, 228028812, 6582873441, 203832844657, 7522104144920, 307994276065974, 13236129969377405, 621482119947376921, 32898794005805573210, 1939157848567313376490, 118255213619653849652599, 7917287291057332412711339
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{j=0..floor(n/2)} A096334(n-j,j).
a(n) mod 2 = A021913(n) for n>=1.
EXAMPLE
a(0) = 1.
a(1) = 2.
a(2) = 2*3 + 1 = 7.
a(3) = 2*3*5 + 3 = 33.
a(4) = 2*3*5*7 + 3*5 + 1 = 226.
a(5) = 2*3*5*7*11 + 3*5*7 + 5 = 2420.
MAPLE
b:= proc(n, k) option remember;
`if`(n=k, 1, b(n-1, k)*ithprime(n))
end:
a:= n-> add(b(n-j, j), j=0..n/2):
seq(a(n), n=0..20);
MATHEMATICA
b[n_, k_] := b[n, k] = If[n == k, 1, b[n - 1, k]*Prime[n]];
a[n_] := Sum[b[n - j, j], {j, 0, n/2}];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 08 2022, after Alois P. Heinz *)
CROSSREFS
Antidiagonal sums of A096334.
Sequence in context: A144005 A232690 A143889 * A241767 A222940 A227120
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jan 21 2022
STATUS
approved