login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350759
a(n) = Sum_{k=0..n} (-1)^k*A345652(k)*Stirling1(n, k).
1
1, 0, -1, 1, 1, -4, 1, 29, -167, 1000, -7989, 75857, -794639, 9058180, -111944923, 1492748581, -21369667087, 326932765840, -5323818187817, 91947960224097, -1678914212753599, 32317295442288844, -654084630476955479, 13886774070229667213
OFFSET
0,6
COMMENTS
Conjectures: For all p prime, (a(p) + a(p+1) - 2) == 0 (mod p),
a(p+1) == 1 (mod ((p+1)*p)).
FORMULA
a(0) = 1, a(n) = -Sum_{k=0..n-2} a(k)*A238363(n-1, k) for n > 0.
a(0) = 1, a(n) = Sum_{k=0..n-2} (n-2-k)!*binomial(n-1, k)*(-1)^(n-1-k)*a(k) for n > 0.
E.g.f.: exp(-1 + (1 + x)*(1 - log(1 + x))).
E.g.f. y(x) satisfies y' + y*log(1 + x) = 0.
a(n) = Sum_{k=0..n} binomial(n, k)*A176118(n-k). - Mélika Tebni, Mar 31 2022
a(n) ~ -(-1)^n * n! * exp(-1) / n^2 * (1 - 2*log(n)/n). - Vaclav Kotesovec, Mar 31 2022
EXAMPLE
a(9) = -Sum_{k=0..7} a(k)*A238363(8, k).
a(9) = -(1*(-5040) + 0*(5760) - 1*(-3360) + 1*(1344) + 1*(-420) - 4*(112) + 1*(-28) + 29*(8)) = 1000.
E.g.f.: 1 - x^2/2! + x^3/3! + x^4/4! - 4*x^5/5! + x^6/6! + 29*x^7/7! - 167*x^8/8! + 1000*x^9/9! + ...
MAPLE
b := proc(n) option remember; `if`(n=0, 1, add((n-1)*binomial(n-2, k)*(-1)^(n-1-k)*b(k), k=0..n-2)) end:
a := n-> add((-1)^k*b(k)*Stirling1(n, k), k=0..n):
seq(a(n), n=0..23);
# Second program:
a := proc(n) option remember; `if`(n=0, 1, add((n-2-k)!*binomial(n-1, k)*(-1)^(n-1-k)*a(k), k=0..n-2)) end:
seq(a(n), n=0..23);
# Third program:
a := series(exp(-1+(1+x)*(1-log(1+x))), x=0, 24):
seq(n!*coeff(a, x, n), n=0..23);
# Fourth program:
A350759 := n-> add(binomial(n, k)*(n-k)!*coeftayl(x^(-x), x=1, n-k), k=0..n):
seq(A350759 (n), n=0..23); # Mélika Tebni, Mar 31 2022
MATHEMATICA
CoefficientList[Series[Exp[-1+(1+x)*(1-Log[1+x])], {x, 0, 23}], x] * Range[0, 23]!
PROG
(Python)
from math import comb, factorial
def a(n):
return 1 if n == 0 else sum([factorial(n-2-k)*comb(n-1, k)*(-1)**(n-1-k)*a(k) for k in range(n-1)])
print([a(n) for n in range(24)])
(PARI) my(x='x+O('x^30)); Vec(serlaplace(exp(-1 + (1 + x)*(1 - log(1 + x))))) \\ Michel Marcus, Jan 14 2022
CROSSREFS
KEYWORD
sign
AUTHOR
Mélika Tebni, Jan 14 2022
STATUS
approved