login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A241060
Semiprimes of the form prime(n)^3 - prime(n+1)^2.
2
201658, 563866, 1213162, 2229322, 4627534, 13593838, 29982262, 127004446, 318134506, 641966518, 948880006, 1340689846, 1671022954, 1827766126, 4241032018, 6055076206, 8775783286, 14009110642, 19917191062, 32482037662, 36682577026, 43862470342, 64900170418
OFFSET
1,1
COMMENTS
All the terms in the sequence are even.
LINKS
EXAMPLE
a(1) = 201658 = 59^3 - 61^2: Also 201658 = 2*100829 (product of two primes). Hence 201658 is semiprime.
a(2) = 563866 = 83^3 - 89^2: Also 563866 = 2*281933 (product of two primes). Hence 563866 is semiprime.
MAPLE
with(numtheory):KD:= proc() local a, b; a:=ithprime(n)^3 - ithprime(n+1)^2; b:=bigomega(a); if b=2 then RETURN (a); fi; end: seq(KD(), n=1..800);
MATHEMATICA
KD = {}; Do[t = Prime[n]^3 - Prime[n + 1]^2; If[PrimeOmega[t] == 2, AppendTo[KD, t]], {n, 500}]; KD
n = 0; Do[t = Prime[k]^3 - Prime[k + 1]^2; If[PrimeOmega[t] == 2, n = n + 1; Print[n, " ", t]], {k, 1, 500000}]
Select[#[[1]]^3-#[[2]]^2&/@Partition[Prime[Range[600]], 2, 1], PrimeOmega[ #] == 2&] (* Harvey P. Dale, Nov 06 2020 *)
PROG
(PARI) s=[]; for(n=1, 10000, t=prime(n)^3-prime(n+1)^2; if(bigomega(t)==2, s=concat(s, t))); s \\ Colin Barker, Apr 16 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 15 2014
STATUS
approved