login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A233845
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with no increasing sequence of length 3 horizontally or antidiagonally downwards
16
201664, 9828513, 11305216, 480071296, 1909001345, 633584640, 23453646656, 326595297792, 370375897185, 35508588544, 1144779904896, 55891166269184, 220722832237568, 71859538054209, 1990039158784, 55884483506105
OFFSET
1,1
COMMENTS
Table starts
........201664...........9828513.............480071296..............23453646656
......11305216........1909001345..........326595297792...........55891166269184
.....633584640......370375897185.......220722832237568.......131619893152104448
...35508588544....71859538054209....149185819914631168....309991751661980537856
.1990039158784.13941925875538977.100827647839987847168.729964339940515853733888
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 56*a(n-1) +16*a(n-2) -768*a(n-3) +512*a(n-4)
k=2: [order 12]
k=3: [order 16]
k=4: [order 32]
Empirical for row n:
n=1: [linear recurrence of order 56] for n>58
EXAMPLE
Some solutions for n=1 k=4
..0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..0..0..0
..0..0..0..0..0..3....0..1..1..0..0..0....1..1..0..0..0..0....1..0..0..0..0..3
..3..3..0..0..3..1....0..1..0..0..2..1....1..1..1..1..0..3....0..3..1..1..1..3
CROSSREFS
Sequence in context: A184406 A036319 A241060 * A233846 A233838 A233837
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2013
STATUS
approved