The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A240978 The largest prime divisor of A246053(n). 4
 2, 2, 7, 31, 127, 73, 691, 8191, 3617, 131071, 524287, 593, 2294797, 657931, 362903, 1001259881, 2147483647, 151628697551, 26315271553053477373, 154210205991661, 1897170067619, 1520097643918070802691, 1798482437, 67568238839737, 153289748932447906241 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS According to theorem 2 of the Milnor paper a(2) and a(4) through a(8) are lower bounds for the number of distinct differentiable structures on spheres S^(4*k-1) for k = 2 and 4,..,8. Better bounds are given in A242032. LINKS Table of n, a(n) for n=0..24. John Milnor, Differentiable Structures on Spheres, American Journal of Mathematics, Vol. 81, No. 4 (Oct., 1959), pp. 962-972. [See p. 971] FORMULA a(n) = A006530(A246053(n)). - Michel Marcus, Aug 18 2014 PROG (Sage) h = lambda x: zeta(2*x)*(4^x-2) A246053 = lambda n: Integer((h((n+1)//2)*h(n//2)/h(n)).denominator()) A240978 = lambda n: max(prime_divisors(A246053(n))) [A240978(n) for n in range(25)] CROSSREFS Cf. A246053, A246052, A242032. Sequence in context: A359582 A047003 A067352 * A242032 A350019 A298440 Adjacent sequences: A240975 A240976 A240977 * A240979 A240980 A240981 KEYWORD nonn AUTHOR Peter Luschny, Aug 12 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 24 05:24 EDT 2024. Contains 372772 sequences. (Running on oeis4.)