login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A242032
A sequence related to lower bounds for the number of distinct differentiable structures on spheres of the form S^(4*k-1).
2
2, 2, 7, 31, 127, 73, 1414477, 8191, 16931177, 5749691557, 91546277357, 3324754717, 1982765468311237, 22076500342261, 65053034220152267, 925118910976041358111, 16555640865486520478399, 8089941578146657681, 29167285342563717499865628061
OFFSET
0,1
COMMENTS
Definition: Divide the prime factorization of an integer M into two parts: L(k, M) = product{p^v(M) the highest power of a prime p which divides M and p < k} and H(k, M) = M / L(k, M). Then a(n) = H(2*floor((n+1)/2), A246053(n)).
For some n the a(n) are lower bounds for the number of distinct differentiable structures on spheres. Compare theorem 2 of the Milnor 1959 paper which asserts that a(2) and a(4) through a(8) are lower bounds for the spheres S^(4*k-1) for k = 2 and 4,..,8.
Let b(n) = numerator(B(2*n)/(2*n)!*(4^n-2)*(-1)^(n-1)), B(n) Bernoulli number. Apart from n=0 and n=1 the first n such that a(n) != b(n) is n = 1437. Thus in the range [2..1436] the a(n) are the numerators in the Taylor series for x*cosec(x), A036280.
LINKS
Helaman Rolfe Pratt Ferguson, Bernoulli Numbers and Non-Standard Differentiable Structures on (4k-1)-Spheres, The Fibonacci Quarterly, Vol. 11(1), 1973.
Friedrich Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956, Springer Berlin.
Friedrich Hirzebruch, Singularities and exotic spheres Séminaire Bourbaki, 10 (1966-1968), Exp. No. 314.
John Milnor, Differentiable Structures on Spheres, American Journal of Mathematics, Vol. 81, No. 4 (Oct., 1959), pp. 962-972.
John W. Milnor and Michel A. Kervaire, Bernoulli numbers, homotopy groups, and a theorem of Rohlin, J. A. Todd (ed.) , Proc. Internat. Congress Mathematicians (Edinburgh, 1958) , Cambridge Univ. Press (1960) pp. 454-458.
Dinesh S. Thakur, A note on numerators of Bernoulli numbers, Proc. Amer. Math. Soc. 140 (2012), 3673-3676.
Wikipedia, Exotic sphere
EXAMPLE
a( 0) = 2
a( 1) = 2
a( 2) = 7
a( 3) = 31
a( 4) = 127
a( 5) = 73
a( 6) = 23 * 89 * 691
a( 7) = 8191
a( 8) = 31 * 151 * 3617
a( 9) = 43867 * 131071
a(10) = 283 * 617 * 524287
a(11) = 127 * 131 * 337 * 593
a(12) = 47 * 103 * 178481 * 2294797
a(13) = 31 * 601 * 1801 * 657931
MATHEMATICA
h[x_] := Zeta[2x] (4^x-2);
a[n_] := Module[{M, k, p}, M = Denominator[h[Quotient[n+1, 2]] h[Quotient[ n, 2]]/h[n]]; k = 2 Quotient[n+1, 2]; p = 2; While[p < k, While[ Divisible[M, p], M = M/p]; p = NextPrime[p]]; M];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 12 2019, from Sage code *)
PROG
(Sage)
def A242032(n):
h = lambda x: zeta(2*x)*(4^x-2)
M = Integer((h((n+1)//2)*h(n//2)/h(n)).denominator())
k = 2*((n+1)//2)
P = Primes()
p = P.first()
while p < k:
while p.divides(M):
M /= p
p = P.next(p)
return M
[A242032(n) for n in (0..30)]
CROSSREFS
KEYWORD
nonn
AUTHOR
Peter Luschny, Aug 12 2014
STATUS
approved