login
A240976
Decimal expansion of 3*zeta(3)/(2*Pi^2), a constant appearing in the asymptotic evaluation of the average LCM of two integers chosen independently from the uniform distribution [1..n].
8
1, 8, 2, 6, 9, 0, 7, 4, 2, 3, 5, 0, 3, 5, 9, 6, 2, 4, 6, 8, 1, 5, 0, 9, 1, 8, 2, 8, 2, 6, 9, 2, 8, 6, 5, 9, 8, 8, 2, 0, 0, 2, 9, 0, 1, 2, 6, 9, 8, 4, 3, 6, 1, 7, 5, 1, 7, 8, 3, 1, 3, 3, 9, 1, 5, 4, 2, 2, 6, 9, 0, 7, 6, 6, 9, 6, 2, 1, 3, 9, 2, 0, 6, 6, 7, 6, 7, 5, 0, 9, 2, 8, 5, 2, 4, 6, 9, 7, 5, 8, 2, 2
OFFSET
0,2
COMMENTS
15*zeta(3)/Pi^2 = 10 * (this constant) equals the asymptotic mean of the abundancy index of the squares (Jakimczuk and Lalín, 2022). - Amiram Eldar, May 12 2023
LINKS
Persi Diaconis and Paul Erdős, On the distribution of the greatest common divisor, Technical Report No. 12 (1977) U.S. Army Research Office.
Steven R. Finch, Errata and Addenda to Mathematical Constants, arXiv:2001.00578 [math.HO], 2020-2022, p. 17.
Rafael Jakimczuk and Matilde Lalín, Asymptotics of sums of divisor functions over sequences with restricted factorization structure, Notes on Number Theory and Discrete Mathematics, Vol. 28, No. 4 (2022), pp. 617-634, eq. (4).
László Tóth, Multiplicative arithmetic functions of several variables: a survey, arXiv:1310.7053 [math.NT], 2013-2014, formula (47), p. 23.
FORMULA
Equals zeta(3)/(4*zeta(2)) = 3*zeta(3)/(2*Pi^2).
From Amiram Eldar, Jan 25 2024: (Start)
Equals (1/10) * Sum_{k>=1} A000188(k)/k^2.
Equals (1/10) * Sum_{k>=1} A048250(k)/k^3. (End)
EXAMPLE
0.18269074235035962468150918282692865988200290126984361751783...
MATHEMATICA
RealDigits[3*Zeta[3]/(2*Pi^2), 10, 102] // First
CROSSREFS
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved