login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A240707
Sum of the middle parts in the partitions of 4n-1 into 3 parts.
2
1, 8, 31, 80, 159, 282, 459, 690, 993, 1378, 1841, 2404, 3077, 3852, 4755, 5796, 6963, 8286, 9775, 11414, 13237, 15254, 17445, 19848, 22473, 25296, 28359, 31672, 35207, 39010, 43091, 47418, 52041, 56970, 62169, 67692, 73549, 79700, 86203, 93068, 100251
OFFSET
1,2
COMMENTS
Original definition: Sum of the second largest parts in the partitions of 4n into 4 parts with smallest part = 1 (see the example).
FORMULA
G.f.: x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 13 2014
EXAMPLE
For a(n) add the parts in the second columns.
13 + 1 + 1 + 1
12 + 2 + 1 + 1
11 + 3 + 1 + 1
10 + 4 + 1 + 1
9 + 5 + 1 + 1
8 + 6 + 1 + 1
7 + 7 + 1 + 1
11 + 2 + 2 + 1
10 + 3 + 2 + 1
9 + 1 + 1 + 1 9 + 4 + 2 + 1
8 + 2 + 1 + 1 8 + 5 + 2 + 1
7 + 3 + 1 + 1 7 + 6 + 2 + 1
6 + 4 + 1 + 1 9 + 3 + 3 + 1
5 + 5 + 1 + 1 8 + 4 + 3 + 1
7 + 2 + 2 + 1 7 + 5 + 3 + 1
5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1
4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1
3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1
1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1
4(1) 4(2) 4(3) 4(4) .. 4n
------------------------------------------------------------------------
1 8 31 80 .. a(n)
MAPLE
A240707:=n->add(add(i*floor((signum((floor((4*n-2-j)/2)-j))+2)/2), i=j+1..floor((4*n-2-j)/2)), j=0..2*n); seq(A240707(n), n=1..50);
MATHEMATICA
c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[c[n], {n, 50}]
PROG
(PARI) Vec(x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 13 2014
(PARI) A240707(n)=sum(a=1, (4*n-1)\3, (4*n-1-a)\2*((4*n-1-a)\2+1)-a*(a-1))\2 \\ The summand is sum(b=a, (4*n-1-a)\2, b). - M. F. Hasler, Apr 17 2014
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Apr 10 2014
EXTENSIONS
Definition simplified by M. F. Hasler, Apr 17 2014
STATUS
approved