The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A239611 a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n). 5
 1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Related to Menon's identity. See Conclusions and further work section of the arXiv file linked. Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018 LINKS Antti Karttunen, Table of n, a(n) for n = 1..2101 C. Calderón, J. M. Grau, A. Oller-Marcen, L. Toth, Counting invertible sums of squares modulo n and a new generalization of Euler totient function, arXiv:1403.7878 [math.NT], 2014. MATHEMATICA g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2, 100] PROG (PARI) a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2, n) == 1, s += gcd(x^2+y^2-1, n)); ); ); s; } \\ Michel Marcus, Jun 29 2014 CROSSREFS Cf. A239612, A239613, A239614, A239615, A079458, A053191, A227499, A244342. Sequence in context: A031003 A324784 A046001 * A031050 A243980 A119677 Adjacent sequences:  A239608 A239609 A239610 * A239612 A239613 A239614 KEYWORD nonn,mult AUTHOR José María Grau Ribas, Jun 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 22 09:50 EDT 2022. Contains 353949 sequences. (Running on oeis4.)