OFFSET
1,2
COMMENTS
Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018
LINKS
Antti Karttunen, Table of n, a(n) for n = 1..2101
C. Calderón, J. M. Grau, A. Oller-Marcen, L. Toth, Counting invertible sums of squares modulo n and a new generalization of Euler totient function, arXiv:1403.7878 [math.NT], 2014.
MATHEMATICA
g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2, 100]
PROG
(PARI) a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2, n) == 1, s += gcd(x^2+y^2-1, n)); ); ); s; } \\ Michel Marcus, Jun 29 2014
CROSSREFS
KEYWORD
nonn,mult
AUTHOR
José María Grau Ribas, Jun 24 2014
STATUS
approved