login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239611
a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).
5
1, 4, 16, 32, 32, 64, 96, 192, 216, 128, 240, 512, 288, 384, 512, 1024, 512, 864, 720, 1024, 1536, 960, 1056, 3072, 1200, 1152, 2592, 3072, 1568, 2048, 1920, 5120, 3840, 2048, 3072, 6912, 2592, 2880, 4608, 6144, 3200, 6144, 3696, 7680, 6912, 4224, 4416
OFFSET
1,2
COMMENTS
Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.
Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - Andrew Howroyd, Aug 07 2018
LINKS
C. Calderón, J. M. Grau, A. Oller-Marcen, L. Toth, Counting invertible sums of squares modulo n and a new generalization of Euler totient function, arXiv:1403.7878 [math.NT], 2014.
MATHEMATICA
g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2, 100]
PROG
(PARI) a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2, n) == 1, s += gcd(x^2+y^2-1, n)); ); ); s; } \\ Michel Marcus, Jun 29 2014
KEYWORD
nonn,mult
AUTHOR
STATUS
approved