login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).
5

%I #26 Aug 08 2018 04:31:41

%S 1,4,16,32,32,64,96,192,216,128,240,512,288,384,512,1024,512,864,720,

%T 1024,1536,960,1056,3072,1200,1152,2592,3072,1568,2048,1920,5120,3840,

%U 2048,3072,6912,2592,2880,4608,6144,3200,6144,3696,7680,6912,4224,4416

%N a(n) = Sum_{0 < x,y <= n and gcd(x^2 + y^2, n)=1} gcd(x^2 + y^2 - 1, n).

%C Related to Menon's identity. See Conclusions and further work section of the arXiv file linked.

%C Multiplicative by the Chinese remainder theorem since gcd(x, m*n) = gcd(x, m)*gcd(x, n) for gcd(m, n) = 1. - _Andrew Howroyd_, Aug 07 2018

%H Antti Karttunen, <a href="/A239611/b239611.txt">Table of n, a(n) for n = 1..2101</a>

%H C. Calderón, J. M. Grau, A. Oller-Marcen, L. Toth, <a href="http://arxiv.org/abs/1403.7878">Counting invertible sums of squares modulo n and a new generalization of Euler totient function</a>, arXiv:1403.7878 [math.NT], 2014.

%t g2[n_] := Sum[If[GCD[x^2 + y^2, n] == 1, GCD[x^2 + y^2 - 1, n], 0], {x, 1, n}, {y, 1, n}]; Array[g2,100]

%o (PARI) a(n) = {s = 0; for (x=1, n, for (y=1, n, if (gcd(x^2+y^2,n) == 1, s += gcd(x^2+y^2-1,n)););); s;} \\ _Michel Marcus_, Jun 29 2014

%Y Cf. A239612, A239613, A239614, A239615, A079458, A053191, A227499, A244342.

%K nonn,mult

%O 1,2

%A _José María Grau Ribas_, Jun 24 2014