login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239609
Sin(arcsin(n)- 3 arccos(n))^2.
4
1, 1, 9409, 332929, 3690241, 23049601, 101626561, 354079489, 1040514049, 2687489281, 6272798401, 13493377921, 27138279169, 51591216769, 93489789121, 162571046401, 272735662081, 443365544449, 700932305089, 1080936581761, 1630220793601, 2409700487041
OFFSET
0,3
COMMENTS
The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, so that sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014
LINKS
FORMULA
G.f.: -(x^8 +9400*x^7 +248284*x^6 +1032520*x^5 +1032646*x^4 +248200*x^3 +9436*x^2 -8*x +1) / (x -1)^9. - Colin Barker, May 24 2014
a(n) = A144130(n)^2. - Robert Israel, May 25 2014
MATHEMATICA
G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -3], {n, 0, 43}]
PROG
(PARI) vector(100, n, round(sin(asin(n-1) - 3*acos(n-1))^2)) \\ Colin Barker, May 24 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved