login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239607 a(n) = (1-2*n^2)^2. 4
1, 1, 49, 289, 961, 2401, 5041, 9409, 16129, 25921, 39601, 58081, 82369, 113569, 152881, 201601, 261121, 332929, 418609, 519841, 638401, 776161, 935089, 1117249, 1324801, 1560001, 1825201, 2122849, 2455489, 2825761, 3236401, 3690241, 4190209, 4739329 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) = sin(arcsin(n) - arccos(n))^2. G.f.: -(x^4+44*x^3+54*x^2-4*x+1) / (x-1)^5. - Colin Barker, May 24 2014
a(n) = A056220(n)^2. - Michel Marcus, May 27 2014
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*cosec(Pi/sqrt(2))^2/8 + (Pi/(4*sqrt(2))*cot(Pi/sqrt(2))) + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*cosec(Pi/sqrt(2))*cot(Pi/sqrt(2))/8 + (Pi/(4*sqrt(2)))*cosec(Pi/sqrt(2)) + 1/2. (End)
MATHEMATICA
Table[(1-2*n^2)^2 , {n, 0, 43}]
PROG
(PARI) vector(100, n, round(sin(asin(n-1) - acos(n-1))^2)) \\ Colin Barker, May 24 2014
(PARI) a(n)=(1-2*n^2)^2 \\ Charles R Greathouse IV, Jun 04 2014
CROSSREFS
Sequence in context: A144407 A089552 A017354 * A227079 A251222 A250967
KEYWORD
nonn,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 09:50 EST 2023. Contains 367517 sequences. (Running on oeis4.)