login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A239019 Numbers which are not primitive words over the alphabet {0,...,9} (when written in base 10). 4
11, 22, 33, 44, 55, 66, 77, 88, 99, 111, 222, 333, 444, 555, 666, 777, 888, 999, 1010, 1111, 1212, 1313, 1414, 1515, 1616, 1717, 1818, 1919, 2020, 2121, 2222, 2323, 2424, 2525, 2626, 2727, 2828, 2929, 3030, 3131, 3232, 3333, 3434, 3535, 3636, 3737, 3838, 3939, 4040, 4141, 4242, 4343, 4444, 4545, 4646, 4747, 4848, 4949 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

A word is primitive iff it is not a power, i.e., repetition, of a subword. The only non-primitive words with a prime number of letters (here: digits) are the repdigit numbers. Thus, the first nontrivial terms of this sequence are 1010,1212,...

This sequence does *not* contain all non-primitive words over the alphabet {0,...,9}, namely, it excludes those which would be numbers with leading zeros: 00,000,0000,0101,0202,...

Lists of non-primitive words over a sub-alphabet of {1...9}, like A213972, A213973, A213974, A239018, ... are given as intersection of this with the set of all words in that alphabet, e.g., A007931, A032810, A032917, A007932, ...

LINKS

Robert Israel, Table of n, a(n) for n = 1..10000

MAPLE

F:= proc(d) local p, R, q;

  R:= {seq(x*(10^d-1)/9, x=1..9)};

  for p in numtheory:-factorset(d) minus {d} do

    q:= d/p;

    R:= R union {seq(x*(10^d-1)/(10^q-1), x=10^(q-1)..10^q-1)};

  od:

  sort(convert(R, list))

end proc:

[seq(op(F(i)), i=2..4)]; # Robert Israel, Nov 14 2017

PROG

(PARI) is_A239019(n)=fordiv(#n=digits(n), L, L<#n && n==concat(Col(vector(#n/L, i, 1)~*vecextract(n, 2^L-1))~)&&return(1))

CROSSREFS

Sequence in context: A299792 A115853 A050785 * A033023 A014181 A302438

Adjacent sequences:  A239016 A239017 A239018 * A239020 A239021 A239022

KEYWORD

nonn,base

AUTHOR

M. F. Hasler, Mar 08 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 11:00 EDT 2020. Contains 333083 sequences. (Running on oeis4.)