login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A238086
Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k is the increasing list of all primes p such that (p+k)^2+k is prime but (p+j)^2+j is not prime for all 0<j<k.
23
3, 7, 5, 11, 31, 13, 29, 47, 37, 19, 193, 41, 59, 43, 23, 139, 331, 113, 61, 79, 53, 107, 523, 409, 163, 67, 97, 73, 181, 293, 563, 457, 173, 71, 103, 83, 101, 277, 359, 769, 487, 199, 127, 241, 89, 17, 191, 541, 389, 853, 787, 211, 131, 271, 109
OFFSET
1,1
LINKS
EXAMPLE
Column k=3 contains prime 47 because (47+3)^2+3 = 2503 is prime and (47+2)^2+2 = 2403 = 3^3*89 and (47+1)^2+1 = 2305 = 5*461 are composite.
Square array A(n,k) begins:
: 3, 7, 11, 29, 193, 139, 107, 181, ...
: 5, 31, 47, 41, 331, 523, 293, 277, ...
: 13, 37, 59, 113, 409, 563, 359, 541, ...
: 19, 43, 61, 163, 457, 769, 389, 937, ...
: 23, 79, 67, 173, 487, 853, 397, 1381, ...
: 53, 97, 71, 199, 787, 1019, 401, 1741, ...
: 73, 103, 127, 211, 829, 1489, 433, 2551, ...
: 83, 241, 131, 251, 991, 1553, 461, 2617, ...
MAPLE
A:= proc() local h, p, q; p, q:= proc() [] end, 2;
proc(n, k)
while nops(p(k))<n do q:= nextprime(q);
for h while not isprime((q+h)^2+h)
do od; p(h):= [p(h)[], q]
od; p(k)[n]
end
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
nmax = 12;
col[k_] := col[k] = Reap[For[cnt = 0; p = 2, cnt < nmax, p = NextPrime[p], If[PrimeQ[(p+k)^2+k] && AllTrue[Range[k-1], !PrimeQ[(p+#)^2+#]&], cnt++; Sow[p]]]][[2, 1]];
A[n_, k_] := col[k][[n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 03 2019 *)
CROSSREFS
Main diagonal gives A238663.
Cf. A238048.
Sequence in context: A074588 A287865 A379727 * A065175 A065283 A352670
KEYWORD
nonn,tabl,look
AUTHOR
Alois P. Heinz, Feb 17 2014
STATUS
approved