|
|
A238673
|
|
First prime p such that (p+n)^2+n is prime but (p+j)^2+j is not prime for all 0<j<n.
|
|
2
|
|
|
3, 7, 11, 29, 193, 139, 107, 181, 101, 17, 379, 641, 167, 3691, 257, 2243, 1279, 1217, 3581, 757, 6113, 971, 5011, 5843, 317, 15199, 2741, 761, 59221, 6067, 14423, 5167, 13043, 3191, 43321, 8819, 2333, 23497, 15083, 15107, 414769, 13841, 20477, 29101, 3137
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..130
|
|
MATHEMATICA
|
pQ[n_]:=Module[{pr=2, c}, c=Table[(pr+i)^2+i, {i, n}]; While[!PrimeQ[ Last[ c]]|| AnyTrue[Most[c], PrimeQ], pr=NextPrime[pr]; c=Table[(pr+i)^2+i, {i, n}]]; pr]; Array[pQ, 50] (* Harvey P. Dale, Nov 18 2014 *)
|
|
CROSSREFS
|
Row n=1 of A238086.
Sequence in context: A014447 A233517 A125879 * A318263 A213740 A267357
Adjacent sequences: A238670 A238671 A238672 * A238674 A238675 A238676
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Mar 02 2014
|
|
STATUS
|
approved
|
|
|
|