

A238670


Primes p such that (p+8)^2+8 is prime but (p+j)^2+j is not prime for all 0<j<8.


2



181, 277, 541, 937, 1381, 1741, 2551, 2617, 2677, 3433, 3919, 4231, 4657, 4933, 5923, 6337, 6481, 6781, 7669, 7717, 7867, 8161, 8167, 8287, 8329, 8389, 8647, 8707, 9013, 9151, 9397, 9661, 9739, 9967, 10651, 11059, 11287, 11743, 11887, 12421, 12457, 12697
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..10000


MATHEMATICA

Select[Prime[Range[1600]], PrimeQ[Table[(#+n)^2+n, {n, 8}]]=={False, False, False, False, False, False, False, True}&] (* Harvey P. Dale, Dec 17 2016 *)


CROSSREFS

Column k=8 of A238086.
Sequence in context: A107694 A142312 A020360 * A168473 A142920 A142058
Adjacent sequences: A238667 A238668 A238669 * A238671 A238672 A238673


KEYWORD

nonn


AUTHOR

Alois P. Heinz, Mar 02 2014


STATUS

approved



