login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379727
a(1) = 1. For n > 1, a(n) = smallest prime factor of c=2*a(n-1)+1 that is not in {a(1), ..., a(n-1)}; if all prime factors of c are in {a(1), ..., a(n-1)}, then we try the next value of c, which is 2*c+1; and so on.
3
1, 3, 7, 5, 11, 23, 47, 19, 13, 37, 151, 101, 29, 59, 17, 71, 41, 83, 167, 67, 271, 181, 727, 97, 1567, 6271, 113, 227, 911, 1823, 521, 149, 599, 109, 73, 197, 79, 53, 107, 43, 563, 347, 139, 31, 127, 89, 179, 359, 719, 1439, 2879, 443, 887, 7103, 14207, 5683, 421, 281, 1289, 2579, 607, 1621, 499, 1999, 5333, 10667, 251, 503, 733, 163, 131, 263, 211, 3391, 13567, 7753, 1723, 383, 307, 1231, 821, 173, 293
OFFSET
1,2
COMMENTS
If we start with a(1) = 2, we get A379652.
LINKS
MATHEMATICA
c[_] := True; j = 1; c[1] = False;
{j}~Join~Reap[Do[
m = 2*j + 1;
While[
Set[k, SelectFirst[FactorInteger[m][[All, 1]], c]]; !
IntegerQ[k], m = 2*m + 1]; c[k] = False;
j = Sow[k], {120}] ][[-1, 1]] (* Michael De Vlieger, Dec 31 2024 *)
PROG
(Python)
from sympy import primefactors
seq = [1]
seq_set = set(seq)
max_seq_len=100
while len(seq) <= max_seq_len:
c = seq[-1]
done = False
while not done:
c = 2*c+1
factors = primefactors(c)
for factor in factors:
if factor not in seq_set:
seq.append(factor)
seq_set.add(factor)
done = True
break
print(seq) # Robert C. Lyons, Jan 01 2025
CROSSREFS
Sequence in context: A074368 A074588 A287865 * A238086 A065175 A065283
KEYWORD
nonn,new
AUTHOR
N. J. A. Sloane, Dec 31 2024
STATUS
approved