login
A379723
Possible values of the sum of squares of divisors function (A001157).
1
1, 5, 10, 21, 26, 50, 85, 91, 122, 130, 170, 210, 250, 260, 290, 341, 362, 455, 500, 530, 546, 610, 651, 820, 842, 850, 962, 1050, 1220, 1300, 1365, 1370, 1450, 1682, 1700, 1810, 1850, 1911, 2210, 2366, 2451, 2500, 2562, 2650, 2810, 2900, 3172, 3255, 3410, 3482
OFFSET
1,2
COMMENTS
The distinct values of the sigma_2(n) function, in ascending order.
The asymptotic density of this sequence is 0 (Niven, 1951).
5460 = sigma_2(60) and 5461 = sigma_2(64) are two consecutive integers in this sequence. Are there any other such pairs? There are none below 10^10.
LINKS
Ivan Niven, The asymptotic density of sequences, Bull. Amer. Math. Soc., Vol. 57 (1951), pp. 420-434. See Theorem 3, p. 429.
MATHEMATICA
seq[lim_] := Select[Union[DivisorSigma[2, Range[lim]]], # <= lim &]; seq[3500]
PROG
(PARI) is(n) = invsigmaNum(n, 2) > 0; \\ Amiram Eldar, Jan 03 2025, using Max Alekseyev's invphi.gp
CROSSREFS
A066872 is a subsequence.
Subsequence of A211347.
Sequence in context: A242643 A276959 A001157 * A242644 A002800 A280077
KEYWORD
nonn,easy
AUTHOR
Amiram Eldar, Jan 03 2025
STATUS
approved