|
|
A236250
|
|
Period of the n-th convergent to the continued fraction expansion of Pi.
|
|
1
|
|
|
1, 6, 13, 112, 51, 24, 15088, 12284, 88460, 1204, 459, 31824, 93210, 1864254, 531648, 456036, 8299090, 28574910, 1813560, 32552820, 33166008, 133585180, 2503410, 214098720, 3183870690, 7411133309730, 4852769490690, 2294509753536, 175964053944, 3336533898768
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
|
|
EXAMPLE
|
The 2nd convergent is 22/7 = 3.142857 142857 ..., whose period is 6, so a(2) = 6.
The 3rd convergent is 333/106 = 3.1 4150943396226 4150943396226 ..., whose period is 13, so a(3) = 13.
|
|
PROG
|
(Sage)
st_clenov = 30
vu = continued_fraction_list(pi, nterms=st_clenov);
p = []
for i in (0..n) :
p.append(convergents(vu)[i].period())
return(p)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,base
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|