login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A364199
Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).
0
0, 1, 1, -6, -13, 110, 363, -4214, -18581, 276678, 1525355, -27753022, -183611829, 3948004606, 30473073547, -756031185030, -6669149100757, 187521633674294, 1860949703300139, -58481734930175438, -644853406058229365, 22398157925324204142, 271672536688626976331, -10334883450918076967446
OFFSET
0,4
COMMENTS
The terms with even indices are related to Bernoulli numbers. For example, 183611829 = 3 * 23 * 691 * 3851 and 6669149100757 = 11^2 * 13 * 257 * 3617 * 4561.
The terms with odd indices are related to the generalized Bernoulli numbers attached to the primitive Dirichlet character of period 3 (see A002111).
FORMULA
E.g.f.: 2*x/(exp(-2*x)+exp(x)).
PROG
(Sage)
x = PowerSeriesRing(QQ, 'x').gen()
N = 20
f = (2*x/((-2*x).exp(N)+(x).exp(N))).egf_to_ogf()
print(list(f))
(PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(2*x/(exp(-2*x)+exp(x))), -N) \\ Michel Marcus, Jul 15 2023
CROSSREFS
Very similar to the Genocchi numbers A036968.
Related to A156179 and A002111.
Sequence in context: A144535 A042641 A292121 * A236250 A336046 A368633
KEYWORD
sign
AUTHOR
F. Chapoton, Jul 13 2023
STATUS
approved