login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).
0

%I #12 Jul 15 2023 05:51:28

%S 0,1,1,-6,-13,110,363,-4214,-18581,276678,1525355,-27753022,

%T -183611829,3948004606,30473073547,-756031185030,-6669149100757,

%U 187521633674294,1860949703300139,-58481734930175438,-644853406058229365,22398157925324204142,271672536688626976331,-10334883450918076967446

%N Expansion of e.g.f. 2*x/(exp(-2*x)+exp(x)).

%C The terms with even indices are related to Bernoulli numbers. For example, 183611829 = 3 * 23 * 691 * 3851 and 6669149100757 = 11^2 * 13 * 257 * 3617 * 4561.

%C The terms with odd indices are related to the generalized Bernoulli numbers attached to the primitive Dirichlet character of period 3 (see A002111).

%F E.g.f.: 2*x/(exp(-2*x)+exp(x)).

%o (Sage)

%o x = PowerSeriesRing(QQ, 'x').gen()

%o N = 20

%o f = (2*x/((-2*x).exp(N)+(x).exp(N))).egf_to_ogf()

%o print(list(f))

%o (PARI) my(N=25, x='x+O('x^N)); Vec(serlaplace(2*x/(exp(-2*x)+exp(x))), -N) \\ _Michel Marcus_, Jul 15 2023

%Y Very similar to the Genocchi numbers A036968.

%Y Related to A156179 and A002111.

%K sign

%O 0,4

%A _F. Chapoton_, Jul 13 2023