login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A235535
a(n) = binomial(9*n, 3*n) / (6*n + 1).
4
1, 12, 1428, 246675, 50067108, 11124755664, 2619631042665, 642312451217745, 162250238001816900, 41932353590942745504, 11034966795189838872624, 2946924270225408943665279, 796607831560617902288322405, 217550867863011281855594752680
OFFSET
0,2
COMMENTS
This is the case l=6, k=3 of binomial((l+k)*n,k*n)/((l*n+1)/gcd(k,l*n+1)), see Theorem 1.1 in Zhi-Wei Sun's paper.
Also, the sequence follows A002296 and A235536, namely binomial(7*n,n)/(6*n+1) and binomial(8*n,2*n)/(6*n+1); naturally, even binomial(10*n,4*n)/(6*n+1) is always integer.
LINKS
Zhi-Wei Sun, On Divisibility Of Binomial Coefficients, Journal of the Australian Mathematical Society 93 (2012), p. 189-201.
FORMULA
a(n) = A001764(3*n) = A047749(6*n).
From Ilya Gutkovskiy, Jun 21 2018: (Start)
G.f.: 6F5(1/9,2/9,4/9,5/9,7/9,8/9; 1/3,1/2,2/3,5/6,7/6; 19683*x/64).
a(n) ~ 3^(9*n-1)/(sqrt(Pi)*4^(3*n+1)*n^(3/2)). (End)
D-finite with recurrence 8*(6*n + 5)*(2*n + 1)*(n + 1)*(3*n + 2)*(3*n + 1)*(6*n + 7)*a(n + 1) = 3*(9*n + 8)*(9*n + 7)*(9*n + 5)*(9*n + 4)*(9*n + 2)*(9*n + 1)*a(n). - Robert Israel, Feb 15 2021
MAPLE
seq(binomial(9*n, 3*n)/(6*n+1), n=0..30); # Robert Israel, Feb 15 2021
MATHEMATICA
Table[Binomial[9 n, 3 n]/(6 n + 1), {n, 0, 20}]
PROG
(Magma) l:=6; k:=3; [Binomial((l+k)*n, k*n)/(l*n+1): n in [0..20]]; /* here l is divisible by all the prime factors of k */
CROSSREFS
Cf. similar sequences generated by binomial((l+k)*n,k*n)/(l*n+1), where l is divisible by all the factors of k: A000108 (l=1, k=1), A001764 (l=2, k=1), A002293 (l=3, k=1), A002294 (l=4, k=1), A002295 (l=5, k=1), A002296 (l=6, k=1), A007556 (l=7, k=1), A062994 (l=8, k=1), A059968 (l=9, k=1), A230388 (l=10, k=1), A048990 (l=2, k=2), A235534 (l=4, k=2), A235536 (l=6, k=2), A187357 (l=3, k=3), this sequence (l=6, k=3).
Sequence in context: A296609 A171484 A230519 * A145835 A008992 A260448
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 12 2014
STATUS
approved