login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234297
Squares t^2 = (p+q+r)/3 which are the arithmetic mean of three consecutive primes such that p < t^2 < q < r.
3
47961, 123201, 131769, 826281, 870489, 2486929, 3294225, 5239521, 5294601, 5774409, 6215049, 6335289, 6848689, 9308601, 10634121, 16072081, 17164449, 17732521, 18896409, 19298449, 22667121, 24413481, 25391521, 25836889, 30769209, 32569849, 33535681
OFFSET
1,1
LINKS
EXAMPLE
47961 is in the sequence because 47961 = 219^2 = (47951+47963+47969)/3, the arithmetic mean of three consecutive primes.
131769 is in the sequence because 131769 = 363^2 = (131759+131771+131777)/3, the arithmetic mean of three consecutive primes.
MAPLE
with(numtheory):KD := proc() local a, b, d, e, f; a:=n^2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=(b+d+e)/3; if a=f then RETURN (a); fi; end: seq(KD(), n=2..10000);
MATHEMATICA
amQ[{a_, b_, c_}]:=Module[{m=Mean[{a, b, c}]}, IntegerQ[Sqrt[m]]&&a<m<b<c]; Mean/@Select[Partition[Prime[Range[2100000]], 3, 1], amQ] (* Harvey P. Dale, Mar 14 2014 *)
PROG
(PARI) list(lim)=my(v=List(), p=2, q=3, t); forprime(r=5, nextprime(nextprime(lim+1)+1), t=(p+q+r)/3; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q; q=r); Vec(v) \\ Charles R Greathouse IV, Jan 03 2014
CROSSREFS
Cf. A000290 (squares: a(n) = n^2).
Cf. A062703 (squares: sum of two consecutive primes).
Cf. A069495 (squares: arithmetic mean of two consecutive primes).
Cf. A234240 (cubes: arithmetic mean of three consecutive primes).
Sequence in context: A203929 A234172 A236716 * A043615 A252949 A203547
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Dec 22 2013
EXTENSIONS
Definition corrected by Michel Marcus and Charles R Greathouse IV, Jan 03 2014
STATUS
approved