login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A234240
Cubes which are arithmetic mean of two consecutive primes.
8
64, 1728, 4096, 17576, 21952, 46656, 110592, 195112, 287496, 314432, 405224, 474552, 1061208, 1191016, 1404928, 1601613, 1906624, 2000376, 2146689, 2197000, 3241792, 3511808, 4913000, 5268024, 6229504, 6751269, 6859000, 7077888, 11239424, 20346417, 21952000
OFFSET
1,1
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000 (terms n = 1..57 from K. D. Bajpai)
FORMULA
a(n) = A075191(n)^3.
EXAMPLE
64 is in the sequence because cube 64 = 4^3 = (61+67)/2 is arithmetic mean of two consecutive primes.
1728 is in the sequence because 1728 = 12^3 = (1723+1733)/2.
MAPLE
a:= proc(n) option remember; local k, kk, p, q;
for k from 1 +`if`(n=1, 1, iroot(a(n-1), 3))
do kk:= k^3; p, q:= prevprime(kk), nextprime(kk);
if (p+q)/2=kk then return kk fi
od
end:
seq(a(n), n=1..60); # Alois P. Heinz, Dec 21 2013
MATHEMATICA
Select[Mean/@Partition[Prime[Range[1500000]], 2, 1], IntegerQ[Surd[#, 3]]&] (* Harvey P. Dale, Oct 08 2014 *)
Select[Range[300]^3, #==Mean[{NextPrime[#], NextPrime[#, -1]}]&] (* Harvey P. Dale, Sep 02 2015 *)
PROG
(PARI) is(n)=nextprime(n)+precprime(n)==2*n && ispower(n, 3)
for(n=8, 1e4, if(is(n^3), print1(n^3", "))) \\ Charles R Greathouse IV, Aug 25 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Dec 21 2013
STATUS
approved