login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234239
E.g.f. satisfies: A(x) = exp( x + Integral Integral A(x)^3 dx dx ).
0
1, 1, 2, 7, 34, 209, 1558, 13663, 137786, 1570681, 19970182, 280168967, 4299033994, 71619894529, 1287342696278, 24832567401103, 511673425673626, 11215927371237161, 260604889591097062, 6397958871977787127, 165486967875852965354, 4498061784752926891249, 128176486634710543231798
OFFSET
0,3
COMMENTS
Compare to: F(x) = exp(x + Integral Integral F(x) dx dx) holds when F(x) = 1/(1-sin(x)).
Compare to: G(x) = exp(x + Integral Integral G(x)^2 dx dx) holds when G(x) = 1/(1-x).
FORMULA
E.g.f.: 1/(2*cosh(sqrt(3)*x) - sqrt(3)*sinh(sqrt(3)*x) - 1)^(1/3). - Vaclav Kotesovec, Jan 05 2014
a(n) ~ n! * 2^(1/3) * 3^(n/2) / (GAMMA(2/3) * n^(1/3) * (log(2+sqrt(3)))^(n+2/3)). - Vaclav Kotesovec, Jan 05 2014
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 34*x^4/4! + 209*x^5/5! +...
where
A(x)^3 = 1 + 3*x + 12*x^2/2! + 63*x^3/3! + 414*x^4/4! + 3267*x^5/5! +...
log(A(x)) = x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 63*x^5/5! + 414*x^6/6! + 3267*x^7/7! +...
MATHEMATICA
CoefficientList[Series[(1/(-1 + 2*Cosh[Sqrt[3]*x] - Sqrt[3]*Sinh[Sqrt[3]*x]))^(1/3), {x, 0, 20}], x] * Range[0, 20]! (* Vaclav Kotesovec, Jan 05 2014 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(x+intformal(intformal(A^3+x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
Sequence in context: A145845 A355292 A002720 * A249833 A111539 A337000
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 21 2013
STATUS
approved