login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249833
E.g.f. satisfies: A(x) = 1 + Integral A(x) + A(x)^2*log(A(x)) dx.
2
1, 1, 2, 7, 34, 210, 1574, 13866, 140340, 1604284, 20439484, 287152488, 4409695952, 73482586464, 1320533540808, 25456195929232, 523975944225280, 11469534961767408, 266038450202037728, 6518167274358688512, 168209881653024622944, 4560447490191133853536, 129593625015740116555072
OFFSET
0,3
COMMENTS
Compare to e.g.f. of Bell numbers: if B(x) = exp(exp(x)-1) then
B(x) = 1 + Integral B(x) + B(x)*log(B(x)) dx.
Limit_{n->oo} (a(n)/n!)^(1/n) = 1.30339... (cf. A235129). - Vaclav Kotesovec, Nov 09 2014
LINKS
FORMULA
E.g.f. satisfies: A(x) = exp( Integral 1 + A(x)*log(A(x)) dx ).
Conjecture: a(n) = A370382(n-1, 0) for n > 0 with a(0) = 1. - Mikhail Kurkov, Apr 25 2024
EXAMPLE
E.g.f.: A(x) = 1 + x + 2*x^2/2! + 7*x^3/3! + 34*x^4/4! + 210*x^5/5! + ...
Related expansions.
A(x)^2*log(A(x)) = x + 5*x^2/2! + 27*x^3/3! + 176*x^4/4! + 1364*x^5/5! + ...
A(x)^2 = 1 + 2*x + 6*x^2/2! + 26*x^3/3! + 148*x^4/4! + 1040*x^5/5! + 8688*x^6/6! + 84068*x^7/7! + 924384*x^8/8! + 11381696*x^9/9! + ...
log(A(x)) = x + x^2/2! + 3*x^3/3! + 12*x^4/4! + 64*x^5/5! + 424*x^6/6! + 3358*x^7/7! + 30952*x^8/8! + 325488*x^9/9! + 3845724*x^10/10! + ...
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+intformal(A+A^2*log(A +x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(intformal(1+A*log(A +x*O(x^n))))); n!*polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
Cf. A235129.
Sequence in context: A355292 A002720 A234239 * A111539 A337000 A074059
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 06 2014
STATUS
approved