Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #27 Jun 25 2022 17:08:27
%S 47961,123201,131769,826281,870489,2486929,3294225,5239521,5294601,
%T 5774409,6215049,6335289,6848689,9308601,10634121,16072081,17164449,
%U 17732521,18896409,19298449,22667121,24413481,25391521,25836889,30769209,32569849,33535681
%N Squares t^2 = (p+q+r)/3 which are the arithmetic mean of three consecutive primes such that p < t^2 < q < r.
%H K. D. Bajpai, <a href="/A234297/b234297.txt">Table of n, a(n) for n = 1..3650</a>
%e 47961 is in the sequence because 47961 = 219^2 = (47951+47963+47969)/3, the arithmetic mean of three consecutive primes.
%e 131769 is in the sequence because 131769 = 363^2 = (131759+131771+131777)/3, the arithmetic mean of three consecutive primes.
%p with(numtheory):KD := proc() local a,b,d,e,f; a:=n^2; b:=prevprime(a); d:=nextprime(a); e:=nextprime(d); f:=(b+d+e)/3; if a=f then RETURN (a); fi; end: seq(KD(), n=2..10000);
%t amQ[{a_,b_,c_}]:=Module[{m=Mean[{a,b,c}]},IntegerQ[Sqrt[m]]&&a<m<b<c]; Mean/@Select[Partition[Prime[Range[2100000]],3,1],amQ] (* _Harvey P. Dale_, Mar 14 2014 *)
%o (PARI) list(lim)=my(v=List(),p=2,q=3,t); forprime(r=5, nextprime(nextprime(lim+1)+1), t=(p+q+r)/3; if(denominator(t)==1 && issquare(t) && t < q, listput(v, t)); p=q;q=r); Vec(v) \\ _Charles R Greathouse IV_, Jan 03 2014
%Y Cf. A000290 (squares: a(n) = n^2).
%Y Cf. A062703 (squares: sum of two consecutive primes).
%Y Cf. A069495 (squares: arithmetic mean of two consecutive primes).
%Y Cf. A234240 (cubes: arithmetic mean of three consecutive primes).
%K nonn
%O 1,1
%A _K. D. Bajpai_, Dec 22 2013
%E Definition corrected by _Michel Marcus_ and _Charles R Greathouse IV_, Jan 03 2014