login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234295
E.g.f. satisfies: A(x) = 1 + A(x)^5 * Integral 1/A(x)^5 dx.
2
1, 1, 5, 65, 1405, 42505, 1653125, 78578225, 4414067725, 286099718425, 21015972365525, 1725374840578625, 156560122048892125, 15559151967183795625, 1680744724811088153125, 196083244062052339084625, 24570430118524659881918125, 3291153805391398126661325625
OFFSET
0,3
FORMULA
E.g.f.: 1 + Series_Reversion( 5*log(1+x) - 4*x ).
E.g.f.: -5/4*LambertW(-4/5*exp((x-4)/5)).
E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x)^5 dx ) )^(1/5), where G(x) = 1 + x*G(x)^5 is the g.f. of A002294.
O.g.f.: 1 + x/(1-x - 4*x/(1-2*x - 4*2*x/(1-3*x - 4*3*x/(1-4*x - 4*4*x/(1-...))))), a continued fraction.
a(n) ~ sqrt(5) * n^(n-1) / (4*exp(n)*(5*log(5)-10*log(2)-1)^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 65*x^3/3! + 1405*x^4/4! + 42505*x^5/5! +...
where A(5*log(1+x) - 4*x) = 1+x.
Related series:
A(x)^5 = 1 + 5*x + 45*x^2/2! + 685*x^3/3! + 15645*x^4/4! + 485645*x^5/5! +...
1/A(x)^5 = 1 - 5*x + 5*x^2/2! - 85*x^3/3! - 1595*x^4/4! - 50645*x^5/5! +...
(d/dx Series_Reversion(Integral 1/A(x)^5 dx))^(1/5) begins:
G(x) = 1 + x + 5*x^2 + 35*x^3 + 285*x^4 + 2530*x^5 +...+ A002294(n)*x^n +...
where G(x) = 1 + x*G(x)^5.
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[5*Log[1+x]-4*x, {x, 0, 20}], x], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^5*intformal(1/(A^5+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(5*log(1+X) - 4*X); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) /* O.g.f. continued fraction: */
{a(n)=local(CF=1+x*O(x)); for(k=0, n, CF=1-(n-k+1)*x-4*(n-k+1)*x/CF); polcoeff(1+x/CF, n, x)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2013
STATUS
approved