login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A234293
E.g.f. satisfies: A(x) = 1 + A(x)^4 * Integral 1/A(x)^3 dx.
1
1, 1, 5, 57, 1053, 27057, 891765, 35883369, 1705399821, 93486709089, 5806695485925, 403035074738073, 30915209058366717, 2597006055407919633, 237114260894842246485, 23379981536098259658441, 2475981772053312305191149, 280285314108547303508788161, 33774891856931450901116286405
OFFSET
0,3
FORMULA
E.g.f.: 1 + Series_Reversion( 4*x/(1+x) - 3*log(1+x) ).
E.g.f.: 1 / ( d/dx Series_Reversion( Integral G(x)^3 dx ) )^(1/3), where G(x) = 1 + x*G(x)^4 is the g.f. of A002293.
a(n) ~ n! * (2/3)^(3/2) / (sqrt(Pi) * n^(3/2) * (1-6*log(2)+3*log(3))^(n-1/2)). - Vaclav Kotesovec, Dec 26 2013
E.g.f.: -4/(3*LambertW(-1,-4/3*exp((x-4)/3))). - Vaclav Kotesovec, Dec 26 2013
EXAMPLE
E.g.f.: A(x) = 1 + x + 5*x^2/2! + 57*x^3/3! + 1053*x^4/4! + 27057*x^5/5! +...
where A(4*x/(1+x) - 3*log(1+x)) = 1+x.
Related series:
A(x)^3 = 1 + 3*x + 21*x^2/2! + 267*x^3/3! + 5157*x^4/4! + 135531*x^5/5! +...
A(x)^4 = 1 + 4*x + 32*x^2/2! + 432*x^3/3! + 8592*x^4/4! + 229488*x^5/5! +...
1/A(x)^3 = 1 - 3*x - 3*x^2/2! - 51*x^3/3! - 963*x^4/4! - 25011*x^5/5! +...
The series reversion of A(x)-1 begins:
4*x/(1+x) - 3*log(1+x) = x - 5*x^2/2 + 9*x^3/3 - 13*x^4/4 + 17*x^5/5 - 21*x^6/6 +...
MAPLE
seq(n! * coeff(series(-4/(3*LambertW(-1, -4/3*exp((x-4)/3))), x, n+1), x, n), n = 0..10) # Vaclav Kotesovec, Dec 26 2013
MATHEMATICA
CoefficientList[1 + InverseSeries[Series[4*x/(1+x)-3*Log[1+x], {x, 0, 20}], x], x]* Range[0, 20]! (* Vaclav Kotesovec, Dec 26 2013 *)
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=1+A^4*intformal(1/(A^3+x*O(x^n)))); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
(PARI) {a(n)=local(A=1, X=x+x^2*O(x^n)); A=1+serreverse(4*X/(1+X)-3*log(1+X)); n!*polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 25 2013
STATUS
approved