login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A233041
Prime(n), where n is such that (1 + Sum_{i=1..n} prime(i)^6) / n is an integer.
1
2, 3, 5, 7, 13, 17, 19, 23, 37, 43, 61, 73, 89, 103, 107, 109, 139, 151, 181, 197, 223, 251, 263, 307, 359, 433, 613, 701, 937, 997, 1033, 1213, 1249, 1321, 1601, 2053, 2069, 2267, 2423, 2741, 2801, 3083, 3607, 3613, 3907, 4283, 4327, 4919, 5011, 5419, 6701
OFFSET
1,1
COMMENTS
a(301) > 458158058915101. - Bruce Garner, Apr 07 2021
LINKS
Bruce Garner, Table of n, a(n) for n = 1..300 (first 229 terms from Robert Price)
EXAMPLE
a(5) = 13, because 13 is the 6th prime and the sum of the first 6 primes^6+1 = 6732438 when divided by 6 equals 1122073, which is an integer.
MATHEMATICA
t = {}; sm = 1; Do[sm = sm + Prime[n]^6; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* Derived from A217599 *)
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(t=primepi(n), s); forprime(p=2, n, s+=Mod(p, t)^6); s==0 \\ Charles R Greathouse IV, Nov 30 2013
CROSSREFS
Cf. A085450 = smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n.
Sequence in context: A255203 A356445 A233577 * A049567 A293048 A134204
KEYWORD
nonn
AUTHOR
Robert Price, Dec 03 2013
STATUS
approved