login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230717
Squares that are both a sum and a difference of two positive cubes.
2
345744, 1058841, 1750329, 8340544, 22127616, 67765824, 68574961, 95004009, 112021056, 252047376, 533794816, 771895089, 1097199376, 1232922769, 1275989841, 1416167424, 2217373921, 4337012736, 4388797504, 5402250000, 5554571841, 6080256576, 7169347584, 10721359936
OFFSET
1,1
COMMENTS
Intersection of A050802 and A038596.
Square terms of sequence A225908. - Michel Marcus, Apr 22 2016
REFERENCES
Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.
LINKS
Donovan Johnson and Chai Wah Wu, Table of n, a(n) for n = 1..500 n = 1..100 from Donovan Johnson
FORMULA
a(n) = k^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers k, a, b, c, d.
a(n) = A230716(n)^2.
EXAMPLE
345744 = 588^2 = 14^3 + 70^3 = 71^3 - 23^3.
PROG
(PARI) isA038596(n)=for(k=sqrtnint(n, 3)+1, (sqrtint(12*n-3)+3)\6, if(ispower(n-k^3, 3), return(issquare(n)))); 0
isA050802(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0
is(n)=isA038596(n) && isA050802(n) \\ Charles R Greathouse IV, Oct 28 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 28 2013
EXTENSIONS
a(5)-a(24) from Donovan Johnson, Oct 28 2013
STATUS
approved