login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A230716
Numbers whose square is both a sum and a difference of two positive cubes.
2
588, 1029, 1323, 2888, 4704, 8232, 8281, 9747, 10584, 15876, 23104, 27783, 33124, 35113, 35721, 37632, 47089, 65856, 66248, 73500, 74529, 77976, 84672, 103544, 114075, 127008, 127896, 128625, 165375, 184832, 201684, 222264, 223587, 263169, 264992, 280904
OFFSET
1,1
COMMENTS
Intersection of A050801 and A038597.
a(5)-a(24) are computed from Donovan Johnson's extension of A230717.
REFERENCES
Ian Stewart, "Game, Set and Math", Dover, 2007, Chapter 8 'Close Encounters of the Fermat Kind', pp. 107-124.
LINKS
Donovan Johnson and Chai Wah Wu, Table of n, a(n) for n = 1..500 n=1..100 from Donovan Johnson
FORMULA
a(n)^2 = a^3 + b^3 = c^3 - d^3 for some natural numbers a, b, c, d.
a(n) = sqrt(A230717(n)).
EXAMPLE
588^2 = 14^3 + 70^3 = 71^3 - 23^3.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Sondow, Oct 28 2013
STATUS
approved