login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A050802
Squares expressible as the sum of two positive cubes in at least one way.
7
9, 16, 576, 1024, 6561, 9604, 11664, 28224, 36864, 51984, 65536, 97344, 140625, 250000, 275625, 345744, 419904, 450241, 614656, 717409, 746496, 1028196, 1058841, 1399489, 1500625, 1590121, 1750329, 1806336, 1882384, 2359296
OFFSET
1,1
REFERENCES
"Game, Set and Math" by Ian Stewart, Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
FORMULA
a(n) = A050801(n)^2. - Jonathan Sondow, Oct 28 2013
EXAMPLE
E.g., 717409 = 847^2 = 33^3 + 88^3.
169 = 13^2 = (-7)^3 + 8^3 is not a member, because 169 is not the sum of two positive cubes. - Jonathan Sondow, Oct 28 2013
MATHEMATICA
ok[n_] := Length[Select[PowersRepresentations[n, 2, 3], #[[1]] != 0 & ]] >= 1; Select[Range[1600]^2, ok]
(* Jean-François Alcover, Apr 22 2011 *)
Union[Select[Total/@Tuples[Range[250]^3, 2], IntegerQ[Sqrt[#]]&]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) { nstart=1; a2start=9; n=nstart; a=sqrtint(a2start)-1; until (0, a=a+1; a2=a*a; b1=((a2/2)^(1/3))\1; for (b=b1, a, b3=b*b*b; c1=1; if (a2 > b3, c1=((a2-b3)^(1/3))\1; ); for (c=c1, b, d=b3 + c*c*c; if (d > a2 && c == 1, break(2)); if (d > a2, break); if (a2 == d, print(n, " ", a2); write("b050802.txt", n, " ", a2); n=n+1; break(2); ); ) ) ) } \\ Harry J. Smith, Jan 15 2009
(PARI) is(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0 \\ Charles R Greathouse IV, Oct 28 2013
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Patrick De Geest, Sep 15 1999
EXTENSIONS
More terms from Michel ten Voorde
Definition corrected by Jonathan Sondow, Oct 28 2013
STATUS
approved