OFFSET
1,1
REFERENCES
"Game, Set and Math" by Ian Stewart, Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
LINKS
Tony D. Noe and Harry J. Smith, Table of n, a(n) for n = 1..1000
FORMULA
a(n) = A050801(n)^2. - Jonathan Sondow, Oct 28 2013
EXAMPLE
E.g., 717409 = 847^2 = 33^3 + 88^3.
169 = 13^2 = (-7)^3 + 8^3 is not a member, because 169 is not the sum of two positive cubes. - Jonathan Sondow, Oct 28 2013
MATHEMATICA
ok[n_] := Length[Select[PowersRepresentations[n, 2, 3], #[[1]] != 0 & ]] >= 1; Select[Range[1600]^2, ok]
(* Jean-François Alcover, Apr 22 2011 *)
Union[Select[Total/@Tuples[Range[250]^3, 2], IntegerQ[Sqrt[#]]&]] (* Harvey P. Dale, Mar 04 2012 *)
PROG
(PARI) { nstart=1; a2start=9; n=nstart; a=sqrtint(a2start)-1; until (0, a=a+1; a2=a*a; b1=((a2/2)^(1/3))\1; for (b=b1, a, b3=b*b*b; c1=1; if (a2 > b3, c1=((a2-b3)^(1/3))\1; ); for (c=c1, b, d=b3 + c*c*c; if (d > a2 && c == 1, break(2)); if (d > a2, break); if (a2 == d, print(n, " ", a2); write("b050802.txt", n, " ", a2); n=n+1; break(2); ); ) ) ) } \\ Harry J. Smith, Jan 15 2009
(PARI) is(n)=for(k=sqrtnint((n+1)\2, 3), sqrtnint(n-1, 3), if(ispower(n-k^3, 3), return(issquare(n)))); 0 \\ Charles R Greathouse IV, Oct 28 2013
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
Patrick De Geest, Sep 15 1999
EXTENSIONS
More terms from Michel ten Voorde
Definition corrected by Jonathan Sondow, Oct 28 2013
STATUS
approved