login
A050803
Cubes expressible as the sum of two nonzero squares in at least one way.
16
8, 125, 512, 1000, 2197, 4913, 5832, 8000, 15625, 17576, 24389, 32768, 39304, 50653, 64000, 68921, 91125, 125000, 140608, 148877, 195112, 226981, 274625, 314432, 373248, 389017, 405224, 512000, 551368, 614125, 704969, 729000, 912673, 941192
OFFSET
1,1
COMMENTS
Root values equal terms from sequence A000404 'Sum of 2 nonzero squares'.
In other words, a(n)=(A000404(n))^3. - Artur Jasinski, Nov 29 2007
Obviously, if n and m are different members of this sequence, then n*m is also a member of this sequence. Additionally, if k^3 is a member of this sequence and k is not in A050804, then k^6 is also a member of this sequence. - Altug Alkan, May 11 2016
REFERENCES
Ian Stewart, "Game, Set and Math", Chapter 8 'Close Encounters of the Fermat Kind', Penguin Books, Ed. 1991, pp. 107-124.
EXAMPLE
551368 or 82^3 = 82^2 + 738^2 = 242^2 + 702^2.
MATHEMATICA
a[n_]:=Module[{c=0}, i=1; While[i^2<n && c!=1, If[IntegerQ[Sqrt[n-i^2]], c=1]; i++]; c]; Select[Range[98]^3, a[#]==1&] (* Jayanta Basu, May 30 2013 *)
Select[Range[100]^3, Length[DeleteCases[PowersRepresentations[#, 2, 2], w_ /; MemberQ[w, 0]]] > 0 &] (* Michael De Vlieger, May 11 2016 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Patrick De Geest, Sep 15 1999
EXTENSIONS
Edited by N. J. A. Sloane, May 15 2008 at the suggestion of R. J. Mathar
STATUS
approved